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SUMMARY 

A  computer  program  written  in FORTRAN IV language is presented which deter-  
mines  the  performance of a shock  tube for arbitrary  equilibrium real gas  mixtures.   For 
specified initial gas  composition  and  charging  conditions,  the  program  output  includes 
velocity,  pressure,  density,  enthalpy,  temperature,  sound  speed,  and  species  mole  frac- 
tions at any  point in  the  shock  tube  cycle. 

Several  representative  calculations  illustrate  the  utility of the  program.  The  pro- 
gram is applicable  to  both  simple  and  buffered  shock  tubes as well as to  the  expansion 
tube. 

INTRODUCTION 

The  shock  tube  has  been widely utilized as an  experimental  device  for  producing 
high  enthalpy  flows  for  research  in  such areas as aerodynamic  testing,  chemical  kinetics, 
and  radiation  gas  dynamics. Much of the  utility of the  shock  tube is due  to  the  capability 
of generating a broad  range of test  conditions  in  various  gas  mixtures. 

Numerous  current  experimental  investigations are being  conducted  in  gas  mixtures 
simulating  planetary  atmospheres  that differ markedly  from air. Before  initiating a tes t  
program, it is essential   to  ascertain  the  theoretical   performance of the  shock  tube  for  the 
particular  gas  mixture  being  used  in  order  to  aid  in  determining  test  conditions  and  in 
analyzing  data.  Previous  shock  tube  performance  investigations are too  numerous  to 
describe  herein,  but  they  generally  can  be  divided  into two classes.  Both simple  and 
buffered  shock  tubes are discussed  in  reference 1 and  this  study is an  example of the 
analyses  that   assume a perfect  gas  throughout  the  operating  cycle.  In  reference 2 an  
investigation of the  expansion tunnel is presented  and is illustrative of those  analyses  that 
treat the  shocked  gas  in  the  driven  chamber as a real gas  in  thermodynamic  and  chemical 
equilibrium,  but  the  driver  gas  in  the  unsteady  expansion  process is assumed  to be 



perfect.  The  rather  exhaustive  treatment of the  perfect  gas  performance of the  simple 
shock  tube  in  reference 3 does,  however,  include a discussion of real  gas  effects. 

It is desirable to  construct a digital  computer  program  to  calculate  shock  tube  per- 
formance  for  arbitrary  driver  and  driven  gases so that  the  gas at any  point  in the operating 
cycle  may  be  treated  either as a perfect  gas or as an  equilibrium real gas.  This  report 
describes  such a program  based upon the  assumptions of inviscid  one-dimensional  flow, 
no mixing  at  the  interfaces,  and  instantaneous  diaphragm  bursts.  The  program is appli- 
cable  to  simple o r  buffered  shock  tubes  and  expansion  tubes.  Performance  parameters 
for  some  typical  gas  mixtures  and  operating  conditions  are  presented  to  demonstrate  the 
utility of the  program. 

SYMBOLS 

a 

h 

P 

PO 

R 

S 

T 

t 

U 

US 

X 

Y 

I-1 

sound  speed,  cm/sec 

enthalpy,  ergs/g 

pressure,  dynes/cm2 

standard  atmospheric  pressure,  1.01325 X 106 dynes/cm2 

universal  gas  constant, 8.31469 X 107 ergs/mole-OK 

entropy,  ergs/g-OK 

temperature, OK 

time,  sec 

flow  speed,  cm/sec 

shock.speed,  cm/sec 

distance,  cm 

ratio of specific  heats 

molecular  weight 
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P density,  g/cm3 

Subscripts: 

0 reference  conditions 

1 state of quiescent  gas  in  front of normal  shock 

2  state of gas  behind  normal  shock 

3 state of expanded  driver  gas 

4 initial  driver  gas  conditions 

5 state of test  gas  in  expansion  tube 

10  state of quiescent  gas  in  double-diaphragm  shock  tube 

ANALYSIS 

A  distance-time  diagram  for  the  simple  shock  tube is schematically  depicted  in  fig- 
u re  l(a). Figure l(b) illustrates  the  quiescent  driver  and  test  gases  prior  to  diaphragm 
burst  at t = 0. Figure  l(c)  indicates  the wave system  at  t  = ta.  The  test  gas  in 
state @ is compressed  and  heated by the  normal  shock wave  to state @, while  the 
dr iver   gas   in   s ta te  @ undergoes  an  isentropic  unsteady  expansion  to  state 0. 

In  practice  the  shock  tube is often  designed  to  operate at a fixed  driver  pressure 
and  the  driven  chamber  pressure  (and  the  buffer  chamber  pressure  for  the  buffered  shock 
tube) is adjusted  to  produce  the  desired  test  conditions.  For  specified initial charging 
conditions @ and @, the  unsteady  expansion  must  be  solved  for  state @ and  the  nor- 
mal  shock  wave  must  be  solved  for  state @. The  respective  solutions  for  states @ 
and @ are  compatible  only when the  pressures  and  velocities of the two s ta tes   are   equal  
(i.e., p2 = p3 and u2 = u3). 

Unsteady  Expansion 

The  governing  differential  equation  (ref. 4) for  an  isentropic  unsteady  expansion is 

du = +) 
S 
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where  the  negative  and  positive  signs refer to  upstream  and  downstream  waves,  respec- 
tively.  Then,  the  velocity  increment  imparted  to  the  flow by the  expansion is 

AU = u3 - u4 = T l h 4  h3 (x) dh 
S 

In   order  to relate  the  pressure and velocity  in  the as yet  undetermined  state @ for  
an  equilibrium  real  gas, it is necessary  to  resort  to  numerical  techniques  to  evaluate  the 
integral  in  equation (2). The  analysis  formulated  herein  utilizes  the  equilibrium  program 
of reference 5. The  program  includes  ionization  and  dissociation  and  involves  the  fol- 
lowing  assumptions: 

(1) The  mixture is composed of ideal  gases.  

(2) For diatomic  species  the  rigid-rotor  harmonic  oscillator  model is used with 
vibrational-rotational  corrections  for  each  electronic  configuration. 

(3)  Only electronic  levels with principal  quantum  number less than  or  equal  to 5 are 
included. 

The free energy of each of the  species is determined  from  the  partition  function of quan- 
tum  statistical  mechanics.  The  equilibrium  composition is then  arrived  at  by minimiza- 
tion of free energy. 

This  program is used  to  generate  an  array of the  thermodynamic  state  variables 
p, h, a, and s for  the  gas  mixture  over  selected  ranges of pressures  and  tempera- 
tures.  Interpolation  within  the  array  permits  tabulation of p, p,  h, T, and a for 
constant s = s4.  The  integral  in  equation (2) can  then  be  evaluated by a second-order 
Gaussian  quadrature  (ref. 6) between  limit h4 and  an  assumed  limit h3. The  pres- 
su re  p3 is then  determined  from  the  tabulation  at  the  assumed  h3.  It is thus  possible 
to  determine a unique  correspondence  between p3 and  u3 at  constant s4. 

For a perfect  gas,  equation (2) can  be  integrated  in  closed  form  to  yield 

P3 = P4 

Normal Shock  Wave 

The  conservation  equations  valid  across a moving  normal  shock wave are 

(4) 
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US2 (us - u2? h l   + - = h a  + 2  2 

The  solution  to  equations (4) to (6) for  an  equilibrium real gas   requires   an  i terat ive 
method  to  determine  the  pressure  and  velocity  in  state 0. This  analysis  uti l izes  the 
normal  shock  program of reference 7, which is based upon a free-energy  minimization 
technique  for  calculating  equilibrium  thermodynamic  state  variables  coupled with the  con- 
servation  equations  and a modified  Newton-Raphson  iteration  method.  The  equilibrium 
thermochemical  calculations  involve  the  same  assumptions as those  in  reference 5. For  
a specified  state @ and  incident  shock  velocity,  this  method  determines  p2  and u2. 
For  a range of values of US, the  correspondence  between p2 and u2 can  then  be 
established. 

For  a perfect  gas,  the  following  relation  between  p2  and u2 can  be  readily 
derived: 

u2 = -1) 
Method of Solution 

The  solution  generated by the  program  described  herein is based upon the  previ- 
ously  noted  requirement  that p3 equal pa and  u3  equal  u2. By following  the  method 
outlined  for  the  solution of the  unsteady  expansion, a monotonically  decreasing  sequence of 
pressure  as a function of velocity  can  be  calculated. In similar  fashion,  the  normal  shock 
solution  yields a monotonically  increasing  sequence of pressure  as a function of velocity. 
The  method of false position  coupled with a Lagrangian  interpolation (ref. 6) is then  used 
to  determine  the  crossover  point of the two sequences.  The  crossover  values of p  and 
u are the  required  solution. 

PROGRAM DESCRIPTION 

For  application  to  the  simple  shock  tube (fig. l), the  program  contains  the  four 
options  corresponding  to  the  combinations of either a real or perfect  driver  gas  and 
either real or  perfect  driven  gas.  For  the  perfect  gas  option, it is only necessary  to 
solve  the  closed-form  equations (3) and (7) for  the  expansion  and  normal  shock, 
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respectively.  For  the  perfect  gas  expansion,  the  required  input  consists of the initial 
conditions p4, T4,  and u4 and  the  constants  p4,  y4,  and R; in  addition, a range of 
velocities 

u4 < u3 < u4 +- - 
Y - 1  2r 

is required  to  generate a velocity-pressure (u3-p3) curve. 

For the  perfect  gas  normal  shock,  the  required  inputs are pl,  TI,  p1, R, yl, 
and a range of p2  values 

from which a pressure-velocity  (p2-u2)  function is computed. 

The real gas  expansion  calculation  utilizes  the  program of reference 5 to  generate 
thermodynamic  data.  In  addition  to  the  input  required  for  the  program of reference 5, 
suitable  ranges of temperatures  and  pressures  must  be  included  to  define  the  array of 
thermodynamic  variables. For the  constant  entropy  value s4, the  program  reads  from 
the  array  h as a function of l/a and  then  performs  the  numerical  integration 

from which the  pressure-velocity (p3-u.3) function is determined.  The  option  exists  for 
readout of velocity-pressure u3-p3 curves  for  various  entropy  values, as well as u3 
as a function of h  and  T, or for  proceeding  directly  to  the  solution of the  normal  shock. 

0 
The  program of reference 7 is used  to  determine  equilibrium  conditions  behind a 

normal  shock  for a range of Us values  and for given p1, TI, and  gas  composition. 
Each US value  thus  leads  to a value of pa and  corresponding  value of u2,  which 
define  the  pressure-velocity  function  to  be  matched to the  velocity-pressure u3-p3 
curve  from  the  expansion  calculation. 

0 
For expansion  tube or  buffered  shock  tube  performance  calculation,  the  program is 

applied  twice  to  the  simple  shock  tube  cycle  (fig. 2). The  conditions  behind  the  normal 
shock  (state @) in  the first calculation  become  the  driver  gas  conditions (state @) for  
the  second  calculation. It should  be  noted  that  the  driver  velocity  for  the  second  calcula- 
tion is no longer  zero,  since  instantaneous  diaphragm  rupture  has  been  assumed  (i.e., no 
reflection).  The  fact  that  the  gas  behind  the first incident  shock  in  such a system  may  be 
dissociated  and  ionized  emphasizes  the  necessity  for a real gas  calculation of the  expan- 
sion  phase. 
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The  program FORTRAN listing  and a flow  chart are presented  for  reference  in  the 
appendix. 

SAMPLE CALCULATIONS 

Several  sample  calculations  illustrate  the  application of the  program  to  the  deter- 
mination of performance  for  single-  and  double-diaphragm  shock  tubes.  The  driver  pres- 
sures   chosen are such  that  intermolecular  forces  may  be  neglected  and  the  assumption of 
a mixture of ideal  gas is valid. 

Figure 3 shows  the  velocity-pressure (u3-p3) curve  for  the  equilibrium real gas  
isentropic  expansion of helium  and the velocity-pressure u2-p2 curves  for  normal  shock 
waves  in  equilibrium air for  four initial driven  chamber  pressures with  T1 = 300' K. 
The  helium  driver  conditions  chosen are T4 = 15 OOOo K and pq/po = 315. The  cross-  
over point of the curves  determines p3 = p2 and  u3 = u2 for  each  driver-driven  con- 
figuration.  From  these  results  the  shock  speeds  corresponding  to  each  calculation  may 
be  evaluated. The performance  plot of Us 1 as a function of p1 po for  these  driver 

conditions is given  in  figure 4. 

0 

I 
Figures  5  to 9 i l lustrate a typical  set of performance  calculations  for  the  expansion 

tube.  This  type of fqcility (ref. 8) consists of three  sections  separated by two destructible 
diaphragms as shown  in  figure 2. One  section  contains the dr iver   gas  (@), the  interme- 
diate  section  contains  the  test  gas (a), and  the  remaining  section  contains  the  acceler- 
ating  gas (a). 
regions @ and @ in  order  to  obtain  conditions  in  region @ . Then  the  calculation 
was  repeated, with conditions  in  region @ as the  driver  and  the  gas  in  region 
the  driven  gas, which led to  the  determination of the  test  gas  conditions  in 

For  the  performance  calculations,  the  simple  shock  tube  cycle was applied  first  to 

The  following  initial  conditions  were  chosen  for  these  computations: 

- = 30;  T4 = 2500O K; helium  (perfect  gas) p4 
PO 

T 1  = 300' K; air (real   gas) 

T10 = 300' K; helium  (perfect  gas) 

In  this  calculation  the  temperatures  experienced by the  helium  were  not  great enough to 
cause a noticeable  departure  from  perfect  gas  behavior.  Figure  5  shows the shock  speed 
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i n  air Us,1 as a function of pl/po  result ing  from  the  f irst   diaphragm  burst .   The  f inal  

shock  speed  in  helium  in  the  accelerating  chamber is shown in  figure 6 for - = 5 X 
p10 
PO 

and 5 X The  conditions of most  interest   for  this  facil i ty are those of the  gas 
in  region 0, which has  been  shocked  in  the first cycle  and  expanded  and  cooled  in  the 
second  cycle.  The test gas  conditions  which  may  be  obtained  from  the  given initial con- 
ditions are shown in figures 7, 8, and 9. As would be expected,  the  families of curves  for 
shock  speed  Us,10  and  test  gas  speed u5 are similar  (figs. 6 and 7). The  performance 
data  indicate  that  the  facility  may  be  operated  in a manner  in which  the test  gas  speed  and 
pressure  do not change  appreciably  although  the  temperature  may  vary  from  several 
thousand  degrees  to  several  hundred  degrees  Kelvin. 

This  program  was  also  used  to  make a se t  of calculations  for  the  3.8-inch  double- 
diaphragm  shock  tube  at  the  Langley  Research  Center  in  order  to  predict  the real gas  
performance  for a test   gas  mixture of 90 percent N2 and  10  percent  C02.  The  calcula- 
tions  for a double-diaphragm,  or  buffered,  shock  tube are carried  out  in  the  same  manner 
as those  described  for  the  expansion  tube.  However,  in  this  facility  the  test  gas is con- 
tained  in  the  third  chamber  instead of in  the  intermediate  section;  hence,  the  results of 
pr imary  interest  are the  shock  speeds  in  the  test  gas  for a range of p1 po and  plo/po, 
which are shown in  figures  10  and 11. 

I 
Figure  10  gives  the  performance of this  shock  tube  for  the  following  initial 

conditions: 

- = 100; T4 = 300° K; helium  (perfect  gas) p4 
PO 

5 X 2 - 5 5; T1 = 300° K; helium  (perfect  gas) P1 
PO 

5 x 5 - 5 5 x T10 = 300° K; 90 percent N2 and  10  percent  C02 (real gas) p10 
PO 

Figure 11 shows  the  performance  for  these  same initial conditions  for  gases  in 
regions @ and @ but  with perfect  hydrogen  used  instead of helium  for  gas  in 
region @. It has  been  observed  experimentally  that for the  initial  conditions  for which 
this  facility is operated,  the  performance  calculations  give a reasonably  accurate  pre- 
diction of actual  behavior. 

The  results of all sample  calculations  were  checked  where  possible with the  results 
of references 1, 2, 4,  7, and 8. In all calculations  agreement  was  within 1 percent. 
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A computer  program  written  in FORTRAN IV language is presented  which  deter- 
mines  the  performance of a shock  tube  for  arbitrary  equilibrium real gas  mixtures.  For 
specified initial gas  composition  and  charging  conditions,  the  program  output  includes 
velocity,  pressure,  density,  enthalpy,  temperature,  sound  speed,  and  species  mole  frac- 
tions at any  point  in the shock  tube  cycle. 

Several  representative  calculations  illustrate  the  utility of the  program. It was 
noted  that  these  calculations  agreed with resul ts  of other  investigations. 

It  may  be  concluded  that  the  program  has both generality  and  flexibility  for  com- 
puting  shock  tube  performance  in  arbitrary  gas  mixtures. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., June  10,  1968, 
129-01-03-10-23. 
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APPENDIX 

SHOCK TUBE  PERFORMANCE PROGRAM  LISTING AND FLOW  CHART 

.The  FORTRAN  listing  and a schematic  flow  diagram of the  program are presented. 
The  program is composed of nine  subroutines as follows: 

(1) PEREX - Computes p3 as a function of u3 for  a given  p4,  u4,  T4,  and  R 

(2) R O W  - Computes  an  array of thermodynamic state variables  for a given  range 
of p  and T (program of ref. 5) 

(3) INTER - Uses a three-point  Aitkens  interpolation  formula  to  find  p,  h/RT, 
and a/ao at  constant  (s/R)4 

(4) INTEG - Computes l% by Gaussian  quadrature 

(5) PERNS - Computes  u2  for a given  pl,  p2,  TI, y l ,  p l ,  and R 

(6) NORMAL - With given p, T i ,  and  u,  computes  normal  shock  properties of 

gas 
This  subroutine  makes  use of an  equilibrium  program which computes  thermo- 
dynamic  properties of a gas   a t  a given  T  and  p  (program of ref. 7). 

(7) SOLUT - Given  p2,u2  and  p3,u3 , finds  solution  to  curves 

(8) FTLUP - Uses  Aitkens  interpolation  formula  for  three  points;  finds US to 
00 

correspond  to u2 

(9) SLITE - Sets a flag  to  be  checked  later on in  subroutine 

Subroutines (1) to (4) apply  to  the  expansion  phase  only  and  the  program  may be 
stopped  at  this  point.  Also,  u3, p3, T3,  (h/RT)3,  and  (a/ao)Q  may  be  punched  out 
to  save for later computer  runs so that  the  curves  do not  have  to  be  recomputed. Sub- 
routines (5) to (9) apply  to  the  normal  shock  portion of the  program. 

The  program  listing  and  flow  chart are reproduced  in  the  following  pages. 
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C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 

C 

PROGRAM D ~ ~ ~ ~ ( I N P U T I O U T P U T * P U N C H I T A P € ~ = ~ N P U T ~ T A P E ~ = O U T P U T ~ T A P E ~ )  
R E A L   M U  
INTEGER  PUNICOMPUT~REALIEXPO 
D I M E N S I O N   A M ( 3 0 ) t H M ( 3 0 )  

INPUT F O R   E X P A N S I O N  - REAL  GAS 

COMMON P N ( 3 0 ) r T M ( 3 0 ) r N U M T t N C A P X I S O R 4 r U 4  

I N P U T   F O R   E X P A N S I O N  - PERFECT  GAS 

COMMON P 4 r T 4 r U 3 ( 3 0 )  

INPUT  CODES 

COMMON P U N e E X P O t R E A L  COMPUT 

INPUT  FOR  NORMAL  SHOCK 

COMMON P l ~ T l r P 2 ~ 3 0 ) ~ N U M P * U S T O ~ 3 0 ~ * U Z ~ 3 0 )  
COMMON I S P E C ( 3 O ) r J M O L ( l O ) t M t N I B E f A o r N S c  

l A M C * N B * N B T A ( 5 )  

INPUT FOR  PERFECT  EXPANSION  AND  SHOCK 

COMMON MUIGAMMAIR 

GAS  NAME 

COMMON NAME ( 10 ) 

C O M M O N / B L O C K / H M I A M ~ M M ~ P ~ ( ~ ~ )  

N A M E L I S T / E X P / P N I T M I N U M T * ~ C A P X * S O R ~ * U ~ * P ~ * T ~ * U ~ * M U * G A M M A ~ R ~ P U N *  
l E X P O * R E A L * C O M P U T  
N A M E L I S T / N O R Y S / P l r T l ~ P 2 * N U M P ~ U S T O ~ U 2 ~ I S P E C ~ J M O L ~ M ~ N ~ E E T A ~ N S ~ N B ~  

lNBTAeMUtGAMMA*R*REALlCOMPUT 
EXPO= 1 
C A L L   S L  I T E  ( 1 1 
NS=O 
R E A L  =O 
COMPUT=O 

1 R E A D ( 5 r Z O l O ) N A M E  
2010 F O R M A T ( l O A 6 )  

R E A D ( 5 q E X P )  



W R I T E ( 6 r 2 0 0 8 )  
2008 FORMAT(31H lSHOCK  TUBE  PERFORMANCE  PROGRAM/ /14H ENG. J. N E A L Y * l O X r  

115HPROG. J. KEMPER)  
C 
C I F (  COMPUT = l r  OR 0 R E A D  I N  U3rP3 r COMPUTE U3r P3 
C 

I F ( C O M P U T e E Q . 0 )  GO TO 10 
C 
C R E A D  I N  U3rP3 
C 

IF(REAL.EQ.1 1 GO TO 5 
R E A D ( 5 r 2 0 0 5 )   S O R 4 * U 4  

2005 F O R M A T ( ~ ~ X * E ~ S . B ~ ~ X I E ~ ~ ~ ~ )  
GO, TO 6 

5 R E A D ( 5 r 2 0 0 6 )   P 4 r T 4 .  

6 R E A D ( 5 r 2 0 0 7 )   ( P 3 ( I ) r I = l r N U M T )  
2006 FORMAT(l6XrEl5.8r5XrEl5~8) 

2007 F O R M A T ( 4 E 1 7 . 8 )  
R E A D ( 5 r 2 0 0 7 )   ( U 3 ( 1 ) r I = l r N U M T )  
GO T O  101 

10 C O N T I N U E  
C 
C I F  R E A L   = O r 1   R E A L *  OR P E R F E C T   G A S  
C 

IF(REAL.EQ.0)   GO  TO I5 
C A L L  P E R E X ( P ~ ~ U ~ ~ G A M M A * R I T ~ ~ M U * U ~ Q N U M T * P ~ )  
GO T O  101 

15 C A L L  ROGO(PN*TMrNUMTrNCAPXrGAMMA*SOR4 ) 

MMXNUMT 
C A L L   I N T E G ( U 3 r U 4 )  
W R I T E ( 6 r 2 0 1 )  S O R 4 r ~ I r T h ~ I ~ t P 3 ~ I ~ r H M ~ l ) ~ A M ~ I ~ r U 3 ~ I ) ~ I ~ l ~ N ~ T )  

201 FORMAT(7HlOUTPUT/lSX14HS/R=E14.7/3H M r 2 X e 8 X * l H T r 8 X r l O X * l H P r  
1 1 8 X * l H H ~ 1 8 X r l H A r  
1 1 8 X * E H U 3 / ( 1 3 * 5 ( 2 X 1 E 1 7 * 8 ) ) )  

101 I F ( P U N * E Q .  1 )  GO TO 110 
100 WRITE(6~2009)P4rT4r(U3~I~rP3~I~rI~lrNUMT) 

2009 F O R M A T ~ 1 H l ~ 2 X r 3 H P 4 ~ E l 5 ~ 7 ~ 2 X ~ 3 H T 4 ~ E l 5 ~ 7 / ~ X ~ ~ H U 3 r ~ 7 X ~ 2 H P 3 /  
1 ( E 1 7 . 8 r 2 X * E 1 7 . 8 )  1 

102 IF(EXPO.EQ.1)  GO TO 150 
GO TO 1 

C 
C PUNCH U3rP3 
C 

110 IF(REAL.EQ.0)  GO TO 111 
P U N C H   2 0 0 0 r P 4 r T 4  



2000 F O R M A T ( l 1 H P E R F E C T  G A S * 2 X * 3 I i P 4 = E 1 5 . 8 * 2 X * 3 H T 4 = E l 5 . 8 )  
GO T O   1 1 2  

111 P U N C H   2 0 0 1 9   S O R 4 r U 4  
2001 FORMAT(BHREALGASr2Xt4HS/R=El5.8r2X*3HU4=El5~8) 

112 P U N C H   2 0 0 3 r ( P 3 ( I ) t I = l * N U M T )  
2003 F O R M A T ( 4 E 1 7 . 8 r 4 X e 2 H P 3 )  

P U N C H   2 0 0 4 r ( U 3 ( 1   ) r I = l t N U M T )  
2004 F O R M A T ( 4 E 1 7 . 8 r 4 X t 2 H U 3 )  

C 

GO T O  102 
C 
C NORMAL  SHOCK 
C 

150 READ(5rNORM.S)  
C A L L   S L  I T E  (2  ) 

1 5 1 5  WRITE(6*206)NAMEtP4rT4rTl 
206 F O R M A T ~ 7 H 1 O U T P U T / 1 H O ~ 9 X ~ 2 H P 4 ~ l 7 X ~ 2 H T 4 r 1 7 X ~ 2 H T l ~ 2 O X ~ l O A 6 /  

X 3 ( E 1 7 m B r 2 X ) / / 7 X r 2 H P l  
lrl?Xr2HUS*17X*2HU2*17X*2HP2//) 

I C = 1  

GO T O  165 
159 IF(COMPUT.EQ.0) GO TO 160 

160 I F ( R E A L . E Q * O ) G O   T O   1 6 4  
161 C A L L  PERNS(PlrTlrGAMMAeMUrR*P2rU2eNUMP) 

GO TO, 165 
164 C A L L  N O R M A L ( P 1   v T 1  1 
1 6 5   C A L L  SOLUT(U3rP3tU2*P2*NUMT*NUMP*U*P) 

IF (REAL.EQ.0)  GO TO 1 7 0  
U P ~ S Q R T ( C A M M A + R * T l / M l J ~ ~ ~ S Q R l ~ l  .+(P/Pl- l  ) * (GAMMA+l  ) / (2.*GAMMA)) 1 
UP=UP/30*48 
GO T O   1 7 5  

170 C A L L  FTLUP(UrUP*- l rNUMPtU2rVStO) 
175 CONTINUE 

I F ( N S . E Q . 1 )   W R I T E ( 6 r 4 4 5 6 )  
W R I T E ( 6 r 2 0 7 ) P l t U P * U r P  

207 F O R M A T ( 4 ( E 1 7 * 8 * 2 X ) )  
IF (NSeEQ.1  1 W R I T E ( 6 r 4 4 5 6 )  

4456 FORMAT ( / /  ) 

P L A S T = P  1 
C 
C R E A D   N E X T  P 

READ ( 5  r NORMS 1 
IF (P1 .EQ.PLAST) GO TO 1 
GO T O  159 

END 

I 



SIBFTC PEREX DECK 
SUBROUTINE P E R E X ( P 4 r U 4 r G A M M A r R r T 4 r " I P 3 )  
D I M E N S I O N   U 3 ( 3 0 ) r P 3 ( 3 0 )  
REAL M U  
GAMY=2o*GAMMA/(GAMMA-l.) 
P 4 = P 4 * 1 0 0 1 3 2 5 E 6  
DO 1 0   I = l r M  
P ~ ( I ) = P ~ * ( ~ O - ( G A M M A - ~ O ) / ~ O * ( ( ( U ~ ( I ) - U ~ ) * ~ O O ~ ~ ~ ~ S Q R T ~ G ~ ~ ~ A * R * T ~ ~ M U ~  

1 ) )**GAMY 
1 0   P 3 ( I ) = P 3 ( 1 ) / 1 0 0 1 3 2 5 E 6  

P 4 = P 4 / 1 0 0 1 3 2 5 E d  
RETURN 
END 



1 

0 I B F T C   R O C 0  L I S T  

C P E R R Y   N E W M A N r E Q U I L I B R I U M   T H E R M O D Y N A M I C   P R O P E R T I E S   W I T H   D E R I V A T I V E S  
SUBROUTINE ROGO(PNrTMrNUMTrNCAPX*GAM*SOR4)  

80 F O R M A T ( 2 1 5 r 2 E l 4 . 8 )  
81 F O R M A T ( A b r 3 1 5 r 3 E 1 4 . 8 )  
82 F O R M A T ( 5 E 1 4 . 8 )  
83 F O R M A T ( E 1 4 . 8 r 2 1 5 )  
84 F O R M A T ( 4 E 1 4 . 8 * 1 5 )  
90 F d R M A T ( / / 4 H  M U ~ E 1 ~ ~ 8 r 2 X ~ 3 H P O ~ E 1 5 . B t 2 X 1 5 H R H 0 0 = E 1 5 . 8 , 2 X ~ 3 H A O ~ E l 5 ~ 8 ~  
93 F O R M A T ( / ( B E 1 6 . 8 ) )  
97 F O R M A T ( / / ~ ~ X ~ H A ( I ~ J ) ~ ~ X ~ H ~ = I ~ / ( ~ E ~ ~ O ~ ) )  
98 F O R M A T ( l X 2 H P = E 1 5 . @ r 2 X 2 8 H l O O  ITERATIONS-NONCONVERGENT) 

100 F O R M A T ( l 6 H l E X P A N S I O N   P H A S E )  
101 F O R M A T ( 7 5 H O E Q U I L I B R I U M   T H E R M O D Y N A M I C   P R O P E R T I E S   W I T H   D E R I V A T I V E S  

1 I N  R E A L  GAS  SYSTEM// )  
999 FORMAT ( /  ) 

1000 F O R M A T ( l H l t 5 7 X 2 H T , = I 5 r l X I H K I / / )  
1001 F O R M A T ( 6 X 3 H L O G ~ 5 X 3 H L O G r 7 X l H Z ~ 9 X 4 H H / R T ~ 6 X 3 H S / R ~ 6 X 3 H L O G ~ 6 X 6 H D R H O D T ~ 5  

~ X ~ H D R H O D P * ~ X ~ H C P / R I ~ X ~ H C V / R I ~ X ~ H G A M M A * ~ X ~ H G A M ~ A E * ~ X ~ H A / A O / ~ X ~ H P / P O  
2t3X8HRHO/RHOOt34X2HNEr5X7H(T/RHO)*4X7H(P/RHO)//) 

1002 F O R M A T ~ F 9 ~ l t F 1 0 ~ 4 r F 9 . 4 r F l l . 4 r F 1 0 . 4 r F 9 . 3 1 F l O ~ 3 ~ F l O ~ 3 r F l O ~ 3 ~ F l O ~ ~ ~ F 8  
1.3rF8.3rF9.3) 

R E A L   N O ~ M ~ L A M B ~ L A M B D A ~ M U I N E I N E G F R T I L O C N E , M A S S F R ~ L M I N  
I N T E G E R   F ( 3 0 ) r V ( 3 0 r l O ) * P U N  
D I M E N S I O N  S P E C I E ( 3 0 ) r L B ( 3 0 ) r M ( 3 O ~ ~ D ~ L H F ( 3 O ~ ~ B E T A ( 3 O ~ ~ N D E B U G ~ 3 0 ~  

l r I P I V O T ~ 1 0 ~ r R ~ 1 0 ~ 1 0 ~ r S U M A Y ( 1 0 , l ~ t C ( 3 0 r 3 O ~ ~ E ~ 3 O r 3 O ~ ~ B E ~ 3 O r l O ~ ~ A L P H A  
2E(30rlO)rOMECA(30rlO)rOMEGAX~3OrlO)~ X O M E G ( 3 0 r 4 ) r X O M E G X ( 3 0  
3 r 4 ~ ~ Z ~ 3 0 ~ 1 S I G M A ~ 1 0 ~ r U o r D E L T A ~ 1 0 ~ r G A M M A ~ 1 0 ~ r X X ~ 1 0 ) ~ Q ~ 3 0 ~ r Y ~ 3 0 ~ ~ X  
4 ~ 3 0 ~ r A ~ 3 0 r 9 ~ r H O R T ~ 3 O ~ r F O R T ( 3 0 ) t N E C F R T ~ 3 0 ~ r N E G F R T ~ 3 0 ~ r P 1 ~ 9 ~ 2 ~ ~ X P R 1 M E ~ 3 O ~ ~ M A S S F  
5 R ~ 3 0 ~ r C A P X ~ 5 0 ~ t Y I N T ~ 3 O r l ~ * C S U @ P ~ 3 O ~ r P S I ~ 3 O ~ 2 ~ ~ C O N ~ l O ~ 2 ~ ~ D X D T ~ 3 O ~ ~ R  
6 R ~ l 0 ~ 1 0 ~ r 0 ~ 1 0 r 1 0 ~ ~ A B L ~ 3 O ~ * S B L ~ 3 O ~ r H B L ~ 3 O ~ ~ P N ~ 3 O ~ ~ T M ~ 3 O ~  

W R I T E ( 6 r 1 0 0 )  
W R I T E ( 6 r l O l  ) 
C A L L   S L I T E T ( 1 q J J )  
I F ( J J . E Q . 2 )  GO TO 7777 
H = 6 . 6 2 5 1 7 E - 2 7  
X K = l . 3 8 0 4 4 E - 1 6  
P R E F = 1 0 0 1 3 2 5 0 E + 6  
N 0 = 6 0 0 2 3 2 2 E + 2 3  
C = 2 0 9 9 7 9 3 E + l O  

1 R E A D ( 5 r 8 0 )   N U M S P I J I N D X I E A I E R  
C IF  NDEBUG  EQUALS O r  DEBUG 

DO 3 I = l r N U M S P  
R E A D ~ 5 r 8 1 ) S P E C I E ~ I ~ r L B ~ I ~ r F ~ I ~ r N D E @ U G ~ I ~ r M ~ I ~ r D E L H F ~ I ~ ~ B ~ T A ~ I ~  
IL=LB( I) 



R E A D ( 5 - 8 2 )   ( G ( I r L ) . E ( I t L ) r L = l t I L )  
I F ( F ( 1 ) o E Q o O )  GO  TO 3 
I F ( F ( 1 ) o E Q o E )  GO TO 123 
R E A D ~ S r 8 4 ) ~ B E ~ I t L ~ r A L P H A E o r O M E C A ( I . L ~ r O M E G A X ~ I ~ L ~ ~ V ~ I ~ L ~ * L ~ l ~ I  

1L) 
GO TO 3 

123 R E A D ( 5 r 8 2 )   B E ( I r l ) r A L P H A E ( I r l )  
R E A D ( 5 r 8 2 ) ( X O M E G ( I r L W ) r X O M E G X o t L W ~ r L W ~ l r 4 ~  

3 C O N T  INUE 
R E A D ( 5 * 8 2 )   M U r ( Y I N T ( I r 1   ) r I = l r N U M S P )  
READ(Sr82)((A(IrJ)rJ=l~JINOX)rI=lrNU~SP) 

7777 C O N T I N U E  
RHOO=PREF*MU/(NO+XK*273ol5) 
A O = S Q R T ( G A M   + ( P R E F / R H O O ) )  
W R I T E ( 6 . 9 0 )   M U r P R E F t R H O O r A O  
DO 278 K P x l q N C A P X  

278 C A P X ( K P ) = A L O G l O ( P N ( K P ) )  
279 DO 1 9   K I = l t N U M T  

T=TM ( K  I ) 

KT = T  
W R I T E ( 6 r 1 0 0 0 )   K T  
W R I T E ( 6 .  1001 1 
N Y = I  
P A R T = H + C / ( X K + T )  
DO 9 I = l r N U M S P  
IL=LB( I )  
I F ( F ( I ) o E Q o l  1 GO TO Ill 
I F ( F ( I ) o E Q o 2 )  GO TO 112 
QSUM=O 
FPQSUM=O. 
SPQSUM=O 
DO 2 L = l t I L  
Z ( L ) = P A R T * E (  I r L )  
G E Z = G ( I . L ) * E X P ( - Z ( L ) )  
QSUM=QSUM+GEZ 
F P Q S U M = F P Q S U M + G E Z + Z ( L )  

F P Q S U M = F P Q S U M / T  
S P Q S U M = S P Q S U M / T * * 2  

GO T O  71 

2 SPQSUM=SPQSUM+(Z(L) -2o)*GEZ*Z(L)  

QI=(M(I)*T*o326076I6)**105*QSUM*013623883*T 

111 QSUM=Oo 
F P Q S U M x O o  
SPQSUM=O 
DO 11 L = l r I L  



Z ( L ) = P A R T * E ( I * L )  
SIGMA(L)=PART*(BE(I*L)-oS*ALPHAE(I*L)) 
U(L)=PART*(OMEGA(IIL)-~~*OMEGAX(I*L)) 
DELTA(L)=ALPHAE(IIL)*I~/(BE(I*L)-*~*ALPHAE(I*L)) 
G A M M A ~ L ~ ~ ~ B E ~ I ~ L ~ / O M E G A ~ I ~ L ~ ) * * 2 * l o / ~ ~ o - o 5 * A L P H A E ~ I ~ L ~ / B E ~ I ~ L ) '  
XX(L)'OMEGAX(IIL)/(OMEGA(I*L)-~**OMEGAX(I~L)) 
THREEZOO 
FOUR=Oo 
F I V E = O o  
N V = V (  I r L ) + 1  
DO 4 I V = l r N V  
w =  I V - 1  
CC= ( Io-W*DELTA ( L )  1 
AA=SIGMA (L )*CC 
BB=u(L) * (w-xx (L ) *w* (w- lo  1 )  
O N E ~ ~ ~ . / A A + ~ O + G A M M A ( L ) / ( A A * * ~ * C C ~ + . ~ ~ ~ ~ ~ ~ ~ ~ + A A / ~ ~ .  
T W ~ ~ ~ ~ O / A A + ~ ~ ~ * G A M M A ( L ~ / ~ A A * * ~ * C C ~ ~ A A / ~ ~ O ~ ~ ~ ~ O * G A M M A ( L ~ * * ~ / ~ A A * ~ ~ *  

1 cc**2 1 
THREE=THREE+ONEl*EXP(-BB) 
FOUR=FOUR+(BB+ONEI+TWO2)*EXP(-BB) 

4 F I V E ~ F I V E + ( ( B B + * ~ * O N E ~ + ~ . + ~ S + T W ~ ~ + G A " A ( L ~ / ~ A A * * ~ * C C ) * ~ ~ ~ ~ ~ ~ ~ ~ ~ O * G  
~ A M M A ( L ) / ( A A * C C ) + ~ ~ O ~ O O * G A M M A ( L ) * * ~ / ( A A * * ~ * C C * * ~ ) ) + ~ O / A A ) * E X P ( - ~ B ) )  

G E Z = G ( I * L ) * E X P ( - Z ( L ) )  
Q (L =THREE/BETA ( I 1 *GEZ 
QSUM=QSUM+Q ( L  ) 
FPQSUM=FPQSUM+(FOUR+THREE*Z(L))*GEZ 

FPQSUM=FPQSUM/(T*BETA( I  ) )  

SPQSUM=SPQSUM/(T**2*BETA(I ) )  

GO TO 7 1  

1 1  S P Q S ~ M ~ S P Q S ~ M + ~ Z ~ L ) * ( Z ~ L ~ - 2 o ) * T H R E E + 2 o * ~ Z ~ L ~ - I ~ ~ * F O U R + F I V E ~ * G E Z  

QI=(M(I)*T*~32807618)**1~5*QSUM*013623883*T 

1 1 2  SIGMA(l)=PART+(BE(Irl)-o5* A L P H A E ( I . 1 ) )  
PROD= 1 
SUM1 =O* 
SUME=Oo 
DO 32 L W = l t 4  
U(LW)~PART*(XOMEG(IILW)-XOMEGX(I*LW)) 
PROD=PROD*(lo-EXP(-U(LW))) 
B T M = E X P ( U ( L W ) ) - l o  
SUMI=SUMI+U(LW)/BTM 

32 SUM2=SUM2+U(LW)**2*EXP(U(LW) ) /BTM**2  
QSUM=G(I~I)/(BETA(I)*SIGMA(I)*PROD~ 
F P Q S U M = ( l * + S U M I ) * Q S U M / T  
SPQSUM=(SUM1**2+SUM2)*QSUV/T**2 
QI=(M(I)*T*032807618)**105*QSUM*013623883*T 



71 HORT(I)~~O~+T/OSUM*FPQSUM+DELHF(I)/(NO*XK*T) 
FORT(I)=DELHF(I)/(NO*XK*T)-ALOG(QI) 
NEGFRT ( I )=-FORT ( I ) 

9 CSuBP(I ) = ~ O ~ + ~ ~ * T / Q S U M * F P Q S U M - ( T * F P Q S U M / Q S U M ) * * ~ + T * * ~ * S P Q S U ~ / Q S U M  

NNN= 1 
DO 39 KP=lrNCAPX 

9500 P=(lOo++CAPX(KP))*PREF 
NYY=NY 
DO 500 I = l  rNUMSP 

500 Y(I)=YINl(Ie.NY) 
9501*NUMIT=O***,~* 

MM=JINDX+l 
DO 301 J=l  rJINDX 
O( JIMM )=00 
DO 60 I=lrNUMSP 

60 O(JrMM)=O(J*MM)+A(I*J)*Y(I) 
O(MM*J)=O(J*VM) 

301 CONTINUE 
O(MMrMM)=O* 

50 CONTINUE 
YBAR=Y ( 1  ) 
NUMIT=NUMIT+l 
IF(NUMIToEQolO1) GO TO 390 
DO 5 I=2tNUMSP 

5 YBAR=YBAR+Y(I) 
DO 7 K=lrJINDX 
R( 1 rK)=Oo 
DO 6 I=ltNU#SP 

6 R(lrK)=R(lrK)+A(Itl)*A(IK)*~(I) 
7 CONTINUE 

I COUNT= 1 
JJ=2 
DO 28 J=JJ*JINDX 
DO 18 K=JrJINDX 
R( JrK)=Oo 
DO 8 I=lrNUMSP 

8 R(J*K)=R(J*K)+A(ltJ)*A(I*K)*Y(I) 
18 CONTINUE 

DO 10 K=l r I COUNT 
10 R(J*K)tR(K*J) 

ICOUNT=ICOUNT+I 

DO 3011 J=l rMM 
R(JrMM)=O(JrMM) 

3011 R(MM@J)=O(J*MM) 

28 JJ= 1 +I COUNT 

!D 



DO 302 J = l r M M  
DO 302 K = l r M M  

302 R R ( J r K ) = R ( J r K )  
P Y B A R = P R E F * Y B A R  
DO 304 J = l r J I N D X  
S U M A Y ( J r 1  ) = O s  
DO 303 I = l r N U M S P  
T H I S = P + Y ( I   ) / P Y B A R  
I F ( T H I S o L E * O o )  GO TO 303 
S U M A Y ( J r l ) = S U M A Y ( J r l ) + A ( l r J ) + Y ( I ) * ~ F O R T ( I ~ + A L O G ~ T H I S ~ ~  

303 C O N T I N U E  
304 C O N T I N U E  

SUMAY  (MMr  1 )=00 
DO 305 I = l r N U M S P  
T H I S = P + Y ( I   ) / P Y B A R  
I F ( T H I S a L E * O o )  GO TO 305 
S U M A Y ( M M r l ) = S U M A Y ( M M r l ) + Y (  

305 C O N T I N U E  
MN= 1 
NMAX= 10 

I ) * ( F O R T (  I ) + A L O G ( T H I S ) )  

C A L L  S I M E Q ( R r M M r S U M A Y r M N r D E T E R M r I P I V O T r N M A X r 1 S C A L E )  
D O  306 J Z l q J I N D X  

306 P I  ( J e 1   ) = S U M A Y ( J r l  1 
U=SUMAY  (MMr  1 1 
L M I N = l  
LCOUNT=O 
D O  40 I=l r N U M S P  
A P I = O o  
DO 401  J z l t J I N D X  

401 A P I = A P I + A ( I r J ) * P I ( J r l )  
T H I S = P + Y ( I ) / P Y B A R  
I F ( T H I S o L E * l e E - 3 8 )  GO T O  402 
X(I)=Y(I)+(NEGFRT(I)-ALOG(THIS)+U+la+API) 
GO TO 403 

402 X (  I )=00 
403 I F ( X ( 1 ) )  20 r30 r40  

20 L A M B = - Y ( I ) / ( X ( I ) - Y ( I ) )  
I F ( L A M B o G T * O o ) G O   T O   2 1  
Y (  I )=O* 
GO T O  50 

2 1   L C O U N T = l  

GO T O  40 

L C O U N T =  1 

L M I N = A M I N ~ ( L M I N ~ L A M B )  

30 I F ( Y ( I ) o E Q * O * ) G O   T O  40 



N 
0 LAMB= 1 

LMIN=AMINI  (LMINILAMB) 
GO  TO 40 

40 CONTINUE 
IF(LC0UNToEQoO)GO  TO 51 
LAMBDA=o999999*LMIN 
DO 41 I=lrNUMSP 

41 Y(I)=(lo-LAMBOA)*Y(I)+LAMBDA*X(I) 
GO  TO 50 

IF(Y(1  )oEQoOo)GO  TO 52 
I F ~ A B S ~ X ~ I ~ - Y ~ I ~ ~ / Y ~ I ) . C E . E R . O R . A B S O - Y ~ I ) ) ~ G E o E A ) G O  TO 53 

51 DO 52 I=lrNUMSP 

52 CONTINUE 
GO  TO 29 

53 XBAR=Oo 
LAMBDA=l 
LASTCT=O 

531 DO 54 I=lrNUMSP 
XPRIME(I)=(ID-LAMBDA)*Y(I)+LAMBDA*X(I) 

54 XBAR=XEAR+XPRIME(I) 
DFLAMB=O 
DO 541 I=lrNUMSP 
TH I S=P*XPRI  ME ( I ) /  (PREF*XBAR 1 
IF(THISoLE*Om) GO TO 541 
DFLAMB=DFLAMB+(X(I)-Y(I))*(FORT(I)+ALOG(THIS)) 

541 CONTINUE 
IF IDFLAMBoGTaOo  )GO TO 56 

542 DO 55 I=lvNUMSP 
55 Y(I)=XPRIME(I) 

56 LASTCT=LASTCT+I 
GO TO 50 

IF(LASTCToEQo4)GO  TO 542 
LAMBDA=o9*LAMBDA 
XBAR=Oo 
GO  TO 551 

29 XBAR=Oa 
ONE=Oo 
TWO=O 
DO 57 I=l*NUMSP 
XBAR=XBAR+X(I) 
ONE=ONE+X(I  )*HORT(I 1 
MASSFR(I)=X(I)*M(II 

TWO=TWO+X(I)*(FORT(I)+ALOG(X(I))) 
IF(Y(I)oEQoOo) GO TO 57 

57 CONT I NUE 

b 



N 

R E C I P i ! = l o / ( M U * X B A R )  
CAPU=CAPX(KP)+ALOGlO(RECIP2*273ol5/T) 
CHORT=MU*ONE 
SOR=CHORT -MU*(XBAR*ALOG(P/(PREF*XBAR))+TWO) 
RHO=P/(XBAR*NO*XK*T)  
NE=X ( 1 *RHO*NO 
I F ( X ( 1   ) O C T O   ( 6 m * 1 0 0 * * ( - 1 1  ) 1 )  GO TO 58 
LOGNE=-0 
GO T O  391 

58 L O G N E = A L O G l O ( N E )  
59 GO TO 391 

390 W R I T E ( 6 t 9 8 ) P  
GO T O  39 

391 C O N T I N U E  
DO 600 I = I  rNUMSP 
T E S T = X ( I ) + P / ( X B A R * P R E F )  
I F ~ T E S T o L ~ o l O o * * ( - 2 0 ) )  GO TO 601  
PSI(Irl)=X(I)/T*(HORT(I)-FORT(I)-ALOG~TEST~~ 
P S I  ( I  r 2 ) = - X (  I )  
GO TO 600 

601 P S I  ( 1 1 1  )=0* 
P S I ( I * 2 ) = 0 .  

DO 602 J = l r J I N D X  
C O N ( J * l  ) = A ( 1  r J ) * P ' S I  ( 1 9 1  1 
C O N ( J * 2 ) = A ( l r J ) * P S I ( l t 2 )  
DO 603 1=2*NUMSP 
C O N ~ J ~ l ~ ~ C O N ~ J ~ 1 ~ + A ~ I ~ J ~ * P S I ~ I r l ~  

603 C O N ( J ~ ~ ) = C O N ( J I ~ ) + A ( I + J ) * P S I ( I ~ ~ )  
602 CONTINUE 

600 CONTINUE 

C O N ( M M t l ) = P S I ( l r l )  
C O N ( M M e 2 ) = P S I ( I  t 2 )  
DO 607 I = 2 + N U M S P  
CON(MM+ 1 )=CON(MM* 1 ) + P S I  ( I r 1 1 

607 C O N ( M M I ~ ) = C O N ( M ~ + ~ ) + P S I ( I * ~ )  
N C = 2  
C A L L  SIMEQ(RR~MM~CON~NCIDETERM~IPIVOT*NMAX*ISCALE) 
DO 604 J=l r MM 
P I  ( J r 1   ) = C O N ( J r l  ) 

604 P I ( J + E ) = C O N ( J * E )  
DHDT=O 
DO 605 I = l t N U M S P  
S U M A P = A ( I r l ) * P I ( l t l )  
DO 606 J z 2 r J I N D X  

606 SUMAP=SUMAP+A(I  t J ) * P I  ( J t l )  



DXDT(I)=PSI(Irl)-X(I)*(PI(MMrl)+SUMAP) 
605 DHDT=DHDT+ ( X  ( I *CSUBP ( I ) +  T * H O R T ( I ) * D X D T ( I ) )  

D R H O D T = T + P I ( M M r l ) - l .  
D R H O D P = l . +   P I ( M M r 2 )  
CPOR=MU*DHDT 
XZ=XBAR*MU 

XGAMMA=CPOR/CVOR 
GAMMAE=XGAMMA/DRHODP 

TEST=(GAMMAE/GAV  *P/PREF*RHOR) 

CVOR=CPOR-DRHODT**2/DRHODP*XZ 

R H O R = l * / ( l O . * * C A P U )  

I F ( T E S T * L E . O . )   W R I T E ( 6 r 1 0 0 2 )  C A P X ( K P ) r C A P U r X Z r C H O R T r S O R  rLOGNErDRH 
1ODTrDRHODPrCPOR r C V O R  rXCAMMArGAMMAErAOA0 

AOAO=SQRT(TEST)  
W R I T E ( 6 r 1 0 0 2 )  C A P X ( K P ) r C A P U r X Z r C H O R T r S O R  rLOGNErDRHODTrDRHODPrCP0 

IRrCVOR  rXGAMMArGAMMAErAOA0 
I F ( N N N . E Q . 1 0 )  GO TO 608 
GO TO 609 

NNN=O 

ABL (KP 1 =AOAO*AO 
SBL (KP) =SOR 

608 W R I T E ( 6 r 9 9 9 )  

609 NNN=NNN+l 

HBL(KP)=CHORT+T+8*31469E7/MU 
39 CONTINUE 

CALL I N T E R ( P N r T r N C A P X r S B L r H B L I S O R 4 r K I )  
1 9   C O N T I N U E  

RETURN 
END 



S I B F T C   I N T E R  DECK 
SUBROUTINE I N T E R ( P N r T M r N r S B L , H B L r A B L r S ~ R 4 r M )  
D I M E N S I O N  P N ( 3 0 ) r S B L ( 3 0 ) r H B L ( 3 O ) t A B L ( 3 0 )  r 

l A M ( 3 0 ) r H M ( 3 0 )  
C O M M O N / B L O C K / H M t A M r M 1 P 3 0  
DO 5 I = l r N  

5 P N ( 1   ) = A L O G l O ( P N ( I  1 )  
N P = l  
CALL FTLUP(SOR4rP3(M) tNPrNISBLIPN)  
NP=-1 
CALL FTLUP(P3(M)rHM(M)*NP*N*PNrHBL)  
CALL F T L U P ( P 3 ( M ) r A M ( M ) r N P r N * P N r A B L )  
DO 45 I = l r N  

45 P N ( I ) = l O o + * P N ( I )  
P 3 ( M ) = l O o + * P 3 ( M )  
RETURY 
END 



S I B F T C   I N T E G   D E C K  
S U B R O U T I N E   I N T E C ( D U r U 4 )  
E X T E R N A L   F U N C  
D I M E N S I O N   A M ( 3 0 ) r H M ( 3 0 ) * D U ( 3 0 )  rSU(lt30) 
C O M M O N / B L O C K / H M * A M * M t P 3 ( 3 0 )  
DO 1 1 = 1  r M  

1 A M (  I ) = 1  . / A M (  I ) 

DU ( 1 =1J4 

NN= I 
DO 10 I = 2 r M  

CALL MGAUSS(HM(l)rHM(I)rNN*S~J(ltl)rFUNC~FOFX~l) 
10 D U ( I ) = u 4 - S U ( l r I ) / 3 0 . 4 8  

RETURN 
E N D  



JIBFTC  PERNS DECK 
SUBROUTINE P E R N S ( P l r T l * G A M M A * M U I R I P 2 r U 2 r N U M P )  
REAL MU 
D I M E N S I O N  P 2 ( 3 0 ) r U 2 ( 3 0 )  
GAMM=GAMMA-l. 
GAMP=GAMMA+I. 
SQGRT=SQRT(GAMMA*R+TI/MU) 
DO 10 I - l e N U M P  
U 2 ( I ) = S Q G R T * ( P 2 ( I ) / P l - l ~ ~ * S ~ R T ( ( 2 ~ / G A M M A ~ / ~ G A M P * P 2 ( I ~ / P l + G A M M ) )  

10 U2( I )=U2(  I )/30.48 
RETURN 
END 

b 



B I B F T C   N O R M A L   D E C K  
S U B R O U T I N E   N O R M A L ( P l O * T l O )  

C 
C P-886 05 
C NORMAL  SHOCK  PROGRAM 
C P R O G R A M M E D   F O R   T H E   I B M  7094 
C Y I E L D I N G   S O L U T I O N S   F O R   F L O W   P A R A M E T E R S  I N  A R B I T R A R Y   G A S  
C M I X T U R E S  I N  T H E   F O L L O W I N G   S I T U A T I O N S -  
C 1 0  BEHIND N O R M A L   S H O C K  
C 
C 

D I M E N S I O N   Y S T 0 ( 3 0 ) r S H B L ( 8 )  
C 
C E Q U I L I B R I U M  INPUT 

R E A L   M U  
I N T E G E R   P U N I C O M P U T I R E A L ~ E X P O  
COMMON / B L O C K 1 / I C O D E ~ 3 0 ~ r F ~ 3 O ~ ~ C A P M ~ 3 O ~ ~ D H F O ~ 3 O ~ ~ L ~ 3 O ~ ~ G ~ 3 0 ~ 3 0 ~ ~  

1 S M L E ~ 3 0 r 3 0 ~ r C A P L A M ~ 3 O ~ 3 O ~ ~ O M E G ~ 5 ~ 3 ~ ~ 3 O ~ ~ A ~ l O ~ 3 O ~ ~ C O N R ~ C O ~ ~ F ~  
2 C O N N O ~ C O N H ~ C O N K ~ P I ~ E P S l ~ N I T ~ E P S 2 ~ I C l  

COMMON P N ( ~ ~ ) ~ T M ( ~ ~ ) * N U M T I N C A P X * S O R ~ * U ~ * P ~ ~ T ~ ~ U ~ ( ~ O ) *  
l P U N ~ E X P O ~ R E A L ~ C O M P U T ~ P l ~ T l r P 2 o r N U M P ~ U S T O ~ 3 O ~ ~ U 2 ~ 3 O ~  

COMMON I S P E C ( 3 O ) r J M O L ( l O ) t M * ~ * B E T A ( 5 ) * N S *  
lAMC*NB*NBTA(S)rMU*GAMMA*R*NAME(lO) 

C 
C 
C S H O C K   P R O G R A M   I N P U T  
C 
C 
C 

I F ( N S o E Q o 1 )   W R I T E ( 6 r 4 0 0 1 )   . P l O * T 1 0  
4001 F O R M A T ( l H l r l 3 H   N O R M A L   S H O C K / 4 H   P l = E l 5 0 7 r 2 X * 3 H T l = E 1 5 0 7 )  

P l O = P l O * l o O 1 3 2 5 E 6  
DO 1 0 0   I J z l r N U M P  
C A L L   S L I T E T ( 2 r K K )  
GO T O   ( 4 4 9 4 5 ) q K K  

44 C A L L   T A P E ( N * I S P E C * M - J M O L )  
45 M=M 

U S = U S T O ( I J )  
AMC=Oo 
DO 52 I=l *NB 
J = N B T A  ( I 1 

52 A M C = A M C + B E T A ( I   ) * C A P M ( J )  
A 1 0 = 3 6 8 . * S Q R T ( T l O / A M C )  
AM 1 O=US/A 1 0 

C 



C SET  UP  GUESS Y ( I )  
C 

IF(ISPEC(1  )aEQal )GO TO 48 
DO 46 I = l  rN 

46 YSTO(I)=laE-l2 
GO  TO 51 

48 YSTO(l)=Oa 
DO 49 I=2rN 

49 YSTO(1  )=YSTO(l )+A(Mtf )*1aE-12 
YSTO( 1 )=-YSTO( 1 1 
DO 50 I=2tN 

50 YSTO ( I ) = 1  .E-1 2 
51 CONTINUE 

DO 3035 I=I*NB 
J=NBTA ( I 

3035 YSTO  (J 1 =BETA ( I ) /AMC 
R H 0 1 0 = P l Q / ( T 1 0 / 3 0 0 ~ ) * a 0 4 0 6 1 9 * A M C  
T P ~ T 1 0 + ~ 1 a + a 1 6 * ~ l a 5 * A M l O * * 2 + l a ~ / A M l O * * 2 * ~ A M ~ O * * ~ - l a ~ )  

l*(la-a5*(US-5000a)/l5OOOal 
R H 0 2 = R H 0 1 0 * ( 4 a * A M 1 0 * * 2 ) / ( a 5 *  A M 1 0 * * 2 + 2 a  

C CONVERSION 
RH010=RH010*laE-3 
RH02=RH02+1 a€-3 
US=US+30*48 
IF(TlOaLEa800a)  CALL  SLITE(4) 
CALL E C O M ( T 1 Q t P 1 0 r 0 0 Z r H O Z R T ~ H l O t R H O l O ~ Y S T O e S O R ~  

C 
C STORE  INITIAL  PtTrRHOrAND U IN SHBL(1-4) 
C 

SHBL ( 1 1 =PlO 
SHBL(2)=T10 
SHBL(3)=RHO10 
SHBL (4 )=US 
CALL S H O C K ( T P I S H B L ~ H ~ O ~ Y S T O I R H ~ ~ , U S )  

C 
C UPON  RETURN  SHBL(5-8)  CONTAINS  P2tT2tRH02rAND  UF 
C 

C 

C 

PPR  INT=SHBL (5 1 /CONPRF 

UPRINT=SHBL(8)/30@48 

P2(IJ)=PPRINT 
UE(IJ)=UPRINT 
IF(NSaNEa1) GO TO 100 
WRITE(6r202) UStPPRINTrSHBL(7)rOOZrHOZRTrSORrSHBL(6)rAMC 



202 F O R M A T ( / / 4 H  U S ~ E 1 5 ~ 7 / / 9 X ~ l H P ~ 1 3 X t 3 H R H O t 1 4 X 1 3 H 1 / Z , 1 4 X ~ S H H / Z R T ~  
X 1 2 X * 3 H S / R *  
114X~lHT~l6X~2HM1//(7E17e8)) 

W R I T E ( b r 2 2 1 )  
221 F O R M A T ( / / 2 3 H   F I N A L  Y FROM ITERATIONI~XI~HSPECIES//) 

W R I T E ( 6 r 2 2 0 )  (YSTO(I)rICODE(I)tI=l*N) 
220 F O R M A T ( E 1 7 * 8 r l O X * l A 6 )  
1 0 0   C O N T I N U E  

P l O = P l O / l e 0 1 3 2 5 E 6  
RETURN 
E N D  



SIBFTC  TAPE  DECK 

C 
SUBROUTINE  TAPE(Nr  ISPEC~JIJMOL) 

COMMON / B L O C K l / I C O D E ~ 3 0 ~ r F ~ 3 O ~ ~ C A P M ~ 3 O ~ ~ D H F O ~ 3 O ~ r L ~ 3 O ~ * G ~ 3 0 ~ ~ 0 ~ ~ *  
1 S M L E ~ 3 0 r 3 0 ~ r C A P L A M ~ 3 O r 3 O ~ r O M E G ~ 5 * 3 O ~ 3 O ~ r A ~ l O * 3 O ~ r C O N R * C O N P R F *  
2CONNO~CONH~CONK~PItEPSlrNIT~EPS2rICl 
DIMENSION B L O C K ( 1 5 0 ) ~ L B L O C K ( 3 0 ) ~ I S P E C ~ 3 O ~ + J M O L ~ l O ) ~  
IOEL(5r30) 
READ (9) (LBLOCK(1 ) r I = l  t 3 O  ) 

DO 1 IC=lrN 
ISP=ISPEC(IC) 

1 ICODE(IC)=LBLOCK(ISP) 
C 

READ (9) (BLOCK(I)+I=lr30) 
DO 2 IC=l rN 
ISP=ISPEC(  IC) 

2 F( IC)=BLOCK(ISP) 
C 

READ (9) (BLOCK(I)rI=lr30) 
DO 3 IC=lrN 
ISP=ISPEC(IC) 

3 CAPM(IC)=BLOCK(ISP) 
C 

READ(9)(BLOCK(I)rI=lr30) 
DO 4 IC=l r N  
ISP=ISPEC( IC) 

4 DHFO(IC)=BLOCK(ISP) 
C 

READ(9)(LBLOCK(I)rI=lr30) 
DO 5 IC=l rN 
ISP=ISPEC(  IC) 

5 L(IC)=LBLOCK(ISP) 
C 

IC=I 
DO 6 I = l  930 
READ (9) (BLOCK(IL)rIL=lr30) 
IF(ISPEC(IC)-I)6*55*6 

55 DO 56 LI=lr30 
56 G(LItIC)=ELOCK(LI) 

IC=IC+l 
6 CONTINUE 

C 
1 C = l  
DO 7 I=lr30 
READ (9 ) (BLOCK ( I  L) r IL=lr30 1 

08967 

I 

08967 

08967 
08967 
08967 
08967 
08967 
08967 
08967 
08967 
00967 
08967 
08967 
08967 
08967 
08967 

08967 

08967 
08967 
00967 
08967 
08967 
08967 
08967 
08967 
08967 

08967 

08967 

08967 
08967 

08967 
08967 



w 
0 IF(ISPEC(IC)-I 17,6597 

65 DO 66 LI=lt30 
66 SMLE(LI*IC)=BLOCK(LI) 

IC=IC+l 
7 CONTINUE 

IC=1 
DO 12 I=lr30 
READ ( 9 )  (BLOCK(1L) 9 IL=lr30) 
IF(ISPEC(IC)-I )12*13912 

13 DO 125 LI=lt30 
125 CAPLAM(LIrIC)=BLOCK(LI) 

IC=IC+1 
12 CONTINUE 

C 
I IC=1 
DO 8 I=lr30 
READ(9) ( ( O B L ( I C I I L ) ~ I C = ~ ~ ~ ) ~ I L = I ~ ~ O )  
IF(ISPEC(IIC)-I )8r75r8 

75 DO 76 LI=lr30 
DO 76 IC=lr5 

1 IC=I IC+1 
76 OMEG(IC~LIIIIC~=OBL(ICILI) 

8 CONTINUE 
C 

IC=1 
DO 10 1=1r30 
R E A D ( 9 ) ( B L O C K ( I J ) t I J = l r 1 0 )  
I F ( I S P E C ( I C ) - I ) I O I ~ ~ ~ ~ O  

85 DO 9 IJ=lrJ 
I JM=JMOL ( I J ) 

9 A(IJ*IC)=BLOCK(IJM) 
IC=IC+I 

10 CONTINUE 
C 

CONR=8*3146938€7 
CONPRF=le01325€6 
CONNO=6e02322E23 
CONH=6.62517€-27 
CONK=Ie38044E-16 
PI=3e14159 
N I T=300 
EPSl=IeE-7 
EPS2=e 0 1 
IF(I~SPEC~N)-28)14tl5r14 

14 ICl=l 

08967 

08967 

08967 

08967 

08967 
08967 

08967 

08967 

cd 
E 

08967 

08967 
08967 

E 
X 

08967 
08967 

08967 
08967 

08967 

08967 



S I B F T C  SHOCK  DECK 

C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

SUBROUTINE S H O C K ( T G U E S S * B L O C K I H ~ O ~ Y S T O ~ R H O ~ * U S )  

THIS   SUBROUTINE  USES  A   ONE-DIMENSIONAL  NEWTON-RAPHSON  ITERATION 
SCHEME  TO F I N D   T E M P E R A T U R E  AND  PRESSURE A T  E Q U I L I B R I U M   B E H I N D  
I N C I D E N T  SHOCK. I T  WILL C A L L   S U B R O U T I N E  ECOM  TO  COMPUTE THE 
E Q U I L I B R I U M   P R O P E R T I E S .  
D I M E N S I O N   Y S T O ( 3 0 )  
D I M E N S I O N   T ( 2 ) r H ( 2 ) r B L O C K ( 8 )  

L E T   R H 0 2  = F I R S T  RHO 

V E L l ( A A ) = C * D / A A  
PRESl(AA*BB)=B+C*D+*2-AA+BB*+2 
E N T H l ( A A ) = H l O + ( D + * 2 ) / 2 . - 0 / 2 .  
D E L T =  10 
I T = 3  

NCOUNT= 1 
B=BLOCK ( 1 ) 

D =BLOCK ( 4  
U2 ? V E L  1 ( RHO2 ) 
P 2 = P R E S l ( R H 0 2 * U 2 )  
H 2 = E N T H  1 (U2 ) 

COMPUTE F I R S T   P O I N T  

I T T = I T  

E P S 5 = 1 * E - 5  

C=BLOCK (3) 

7 T ( 1 1 =TGUESS 
C A L L  E C O M ( T ( l ) r P 2 r 0 0 Z ~ H O Z R T ~ H ~ l ~ ~ R H O ~ Y S T O ~ S O R ~  

COMPUTE  SECOND  POINT 

T ( 2 ) = T ( I   ) + D E L T  
C A L L   E C O M ( T ( 2 ) r P 2 r O O Z t H O Z R T I H ( 2 ) r R H O I Y S T O I S O R )  
S=(H(2)-H(I))/(T(2)-T(l)) 
T ( l   ) = T ( 2 )  

T E M P E R A T U R E   F R O M   F I R S T   I T E R A T I O N  

T ( 2 ) = T ( 2 ) + ( H 2 - H ( 2 )  ) / S  
H (  1 ) = H ( 2 )  
I F ( T ( 2 ) ) 2 5 * 2 5 * 8  



8 C A L L  E C O M ( T ( 2 ) ~ P 2 r O O Z ~ H O Z R T I H o r R H O I Y S T O I S O R ~  
C 
C S IS S L O P E   ( H 2 - H l   ) / ( T 2 - T 1  
C 

85 S=(H(E)-H(l ) ) / ( T ( 2 ) - T ( l  ) )  

C T 3  
T ( l   ) = T ( 2 )  

L 

C  TEMPERATURE  FROM  SECOND  ITERATION 
C 

T ( 2 ) = T ( E ) + ( H 2 - H ( 2 )  ) / S  
H ( 1   ) = H ( 2 )  
I F ( T ( 2 ) ) 2 5 * 2 5 . 9  

9 C A L L  E C O M ( T ( ~ ) ~ P ~ ~ O D Z I H O Z R T ~ ~ ( ~ ) ~ R ~ O ~ Y S T O I S O R )  
C 
C IF  I T T  IS GREATER  THAN 2 4  I T E R A T E   A G A I N  ON TEMPERATURE WITH 
C F I R S T   P R E S S U R E  
C 

I F ( I T T - 2 ) 1 0 ~ 1 0 ~ 1 1  
1 3  SLAST=(H(2)-H(l))/(T(2)-T(l)) 

T L A S T = T ( E )  
GO T O  12 

C 
1 1   I T T Z I T T - 1  

GO T O  85 
C 
C 
C   TEST RHO FOR CONVERGENCE 
C 

12 IF(ABS((RHO-RHO2)/RHO2)-EPS5)20~20*13 
C 
C  NON-CONVERGENCE- 
C 
C  COMPUTE NEW PRESSURE  AND  CONTINUE  ITERATION  ON  TEMPERATURE  AND 
C  PRESSURE  UNTIL   RHO  CONVERGES 
C 

13 RHOE=RHO 
U E = V E L  1 ( R H 0 2  ) 

H 2 = E N T H  1 ( U 2  ) 
NCOUNT=NCOUNT+l  
T ( 1 ) = T L A S T  

P 2 = P R E S I ( R H 0 2 r U Z )  

14 C A L L  E C O M ( T ( 1 ) r P 2 r 0 0 Z ~ H O Z R T ~ H ~ l ~ * R H O ~ Y S T O r S O R ~  
145 S = S L A S T  

15 T ( 2 ) = T ( 1   ) + ( H 2 - H ( 1  1 ) / S  



C 
C 
C 

20 

C 
C 
C 

25 

CALL E C O M ( T ( 2 ) r P 2 r O O Z r H O Z R T t H o r R H O I Y S T O r S O R ~  
S L A S T = ( H ( 2 ) - H ( l   ) ) / ( T ( 2 ) - T ( l  1 )  
TLAST=T ( 2  1 
GO TO 12 

CONVERGENCE - STORE  OUTPUT 

U E = V E L l ( R H O )  
UF=US-U2 
RHO=RHO+l.E3 
BLOCK ( 5  1 =P2 
B L O C K ( 6 ) = T L A S T  
BLOCK ( 7  1 =RHO 
BLOCK ( 8  )=UF 
RETURN 

TEMPERATURE  ESTIMATE TOO H I G H  - ADJUST 

TGUESS=(TGUESS-T10) /2 .  
GO TO 7 
END 

W 
W 



W 
!-P 

S I B F T C   E C O M   D E C K  
S U B R O U T I N E  E C O M ( T ~ P S T 0 ~ 0 0 Z ~ H O Z R T ~ H r R H O ~ Y S T O ~ S O R )  

C 
C  SUBROUTINE  WHICH*  GIVEN  A   TEMPERATURE  AND  PRESSURE*  COMPUTES 
C   T H E   T H E R t l O D Y N A M I C   E Q U I L I B R I U ~ M   P R O P E R T I E S  O F  A G A S   D E S C R I B E D   B Y  
C T H E   I N P U T .  
C 

R E A L   M U  
INTEGER  PUNICOMPUTIREALIEXPO 
C I M E N S I O N  SMALE(30130)rX(30)rYST0(30) 
D I M E N S I O N  E ~ 3 0 ~ t Y ~ 3 0 ~ r Q ~ 3 0 ~ t C A P F I ~ 3 0 ~ r R ~ 1 0 ~ 1 0 ~ ~ B ~ 1 0 ~ ~  

3 T E M P S ~ 1 O ~ ~ B S U M ~ l l r l ~ r A B L O C K ( l l r l l ) r P T E M P ~ 3 O ~ ~ Z E T A ~ 3 0 ) ~  
4 Z E T A P R ( 3 0 ) r A L A M ( 3 0 ) *  
5 I P I V O T ( 1 1   ) r D Q I N T ( 3 0 ) r Q I N T ( 3 0 r 3 0 )  

C 
COMMON / B L O C K I / I C O D E ~ 3 0 ~ r F ~ 3 O ~ ~ C A P M ~ 3 O ~ ~ D H F O ~ 3 O ~ ~ L ~ 3 O ~ ~ G ~ 3 0 ~ 3 0 ~ ~  

~ S M L E ~ ~ ~ ~ ~ ~ ~ ~ C A P L A M ~ ~ O ~ ~ O ~ I O M E G ~ ~ * ~ O ~ ~ O ~ ~ A ~ ~ O ~ ~ O ~ ~ C O N R ~ C O ~ R F ~  
~ C O N N O ~ C O N H ~ C O N K ~ P I I E P S ~ I N ~ T ~ E P S ~ ~ ~ C ~  

COMMON P N ( ~ O ) I T ~ ( ~ O ) I ~ U M T I N C A P X ~ S O R ~ ~ U ~ ~ P ~ ~ T ~ ~ U ~ ( ~ O ) ~  
~ P U N I E X P O ~ R E A L ~ C O M P U T ~ P I ~ T ~ ~ P ~ ~ ~ O ~ ~ N U M P ~ U S T O ~ ~ O ~ ~ U ~ ~ ~ O ~  

COMMON ISPEC(30)rJMOL(lO)tM*N*BETA(5)rNS* 
I A M C * N B r N E T A ( S ) r M U r G A M M A I R I N A M E ( I O )  

C 
E C U I V A L E N C E ~ S M L E ~ 1 ~ 1 ~ r S M A L E o ) r ( I C O D E ~ l ~ ~ C O D E ~ l ) )  

C 
P I = 3 . 1 4 1 5 9  
C = 2 0 9 9 7 9 3 E 1 0  
NCOUNT=O 
L T E S T = L T E S T  
N2=N 
DO 5 I = l r N  

5 Y ( I ) = Y S T O ( I )  
P = P S T O  

34 TK=CONK+T 
RT=CONR*T 

346 YBAR=OoO 
DO 347 I = ]  r N  

347 Y B A R = Y B A R + Y ( I )  
DO 40 1 - 1  r N  
TEMP1 = O  
LEND=L ( I 
DO 37 L l = l r L E N D  
IF(F( I ) )31 r35r31 

3 1   P R O D = l  
DO 33 I C = l r I C 1  



32 
33 

35 
36 
37 

30 

39 

40 

300 

50 
C 
C 
C 

55 

C 
C 
C 

56 
C 
C 
C 

C 
C 
C 

60 

I F ( O M E G (   I C r L l  r I ) )32933r32 
P R O D = P R O D * ( 1 e - E X P ( - C O N H * C * O M E G ~ I C r L l t I ) / T K ~ )  
C O N T I N U E  
PART=(T/(CAPLAM(LIrI)*PROD))**F(I) 
GO T O  36 
P A R T =  1 e 
QINT(LIrI)=PART*G(LIrI~*EXP~-CONH*C*SMALE~LlrI~/TK~ 
T E M P l = T E M P I + Q I N T ( L I r I )  
Q(I)=(SQRT(2.*PI/CONH+TK/(CONH+CONH*CONNO)*CAPM(I ) ) + * 3 ) * T K / C O N P R F + T E M P l  
I F ( Y ( I ) ) 3 8 t 3 8 r 3 9  
C A P F I  ( I  )=O 
GO T O  40 
C A P F I ~ I ~ ~ Y ~ I ~ * ~ A L O G ~ P / C O N P R F ~ + A L O G ~ Y ~ I ~ / Y B A R ~ - A L O G ( Q ~ I ~ ~ + D H F O ~ I )  

CONT I NUE 
C A L L   S L I T E T ( 4 t J J )  
GO T O  (95 r396) t JJ  
DO 50 J = l r M  
DO 50 K = l  r M  
R ( K r J ) = O e O  
B ( J ) = O o O  
DO 50 I = l r N  
B ( J ) = B ( J ) + A ( J r I ) * Y ( I )  
R ( K I J ) = R ( K ~ J ) + A ( J I I ) * A ( K ~ I ) * Y ( I )  

1 / R T  ) 

S E T  UP M A T R I X   F O R   S O L U T I O N  OF E Q U A T I O N S  

DO 60 J=l r M  
T E M P S ( J ) = O e O  
DO 55 I = l  r N  
TEMPS(J)=TEMPS(J)+A(JrI)*CAPFI(I) 
B S U M ( J t 1   ) = B ( J ) + T E M P S ( J )  

CONSTANT  TERMS I N  BSUM B L O C K  

DO 56 K = l r M  
K 1  =K+1 
A B L O C K ( J r K l ) = R ( K * J )  

P I  TERMS I N  A B L O C K  I N  COLUMNS 2 THROUGH N+1 

A B L O C K ( J t 1  ) = B ( J )  

( X / Y   T E R M S  I N  F I R S T   C O L U M N  



W 
b, Ml=M+l 

ABLOCK(M1 r l  )=0*0 
DO 61 K=lrMl 
K1 =K+1 

61 ABLOCK(M1 rK1 )=B(K) 
BSUM(M1 r l  )=0*0 
00 62 I=lrN 

62 BSUM(Mlcl)=BSUM(Mlrl)+CAPFI(I) 
C 
C MATINV  EXPECTS  AN M+l BY M+l MATRIX 
C 

C 
C RETURN  WITH  ANSWERS IN BSUM 
C 

ZETAPzBSUM ( 1  r 1 )*YBAR 

CALL S I M E ~ ~ A B L O C K ~ l r l ~ r M l r B S U M ( l r l ~ r l r D E T E R M ~ I P I V O l * l ~ ~ O ~  

ZERO=O 
NEG=O 0 
DO 70 I = 1  cN 
PTEMP(I)=O*O 
DO 65 J=l rM 
Jl=J+l 

65 PTEMP(I)=PTEMP( l)+BSUM(Jlrl ) *  A(JrI)*Y(I) 
ZETA(I)=-CAPFI(I)+Y(I)*BSUM(lrl)+PTEMP(I) 

C 
C TEST  FOR  NEGATIVE OR ZERO  ZETA 
C 

68 IF(ZETA(1))69r695r70 
69 PIECEz-Y(I)/(ZETA(I)-Y(I)) 

IF(PIECE)691*692r691 
691 NEG=NEG+l 

ALAM(NEG)=PIECE 
GO  TO 70 

692 Y(I)=O 
ZERO= 1 
GO  TO 70 

70 CONTINUE 
695 IF(Y(1))69*7Or69 

C 
C FIND GREATEST  NEGATIVE  ZETA-Y 

IF(ZER0)700r700r698 
698 IF~NCOUNT-NIT)699rlOOrlOO 
699 NCOUNT=NCOUNT+l 

GO TC 346 



700 
71 

73 

72 

74 

745 
75 

76 

765 

77 

80 
805 

78 

C 
C 
C 

8 1  
81 5 

813 

818 

816 
817 

82 
C 
C 
C 

800 

I F ( N E G - l ) 7 8 r 7 1 r 7 3  
A L A M P R = e 9 9 9 9 9 9 * A L A M  ( 1 ) 
GO T O  745 
A R C 1   = A L A M  ( 1 ) 

A R G E = A L A M ( I )  
A R G I = A M I N l   ( A R C 1   r A R G 2 )  
C O N T I N U E  
A L A M P R = . 9 9 9 9 9 9 + A R G l  
I I C = O  
Z E T A P = O  

DO 74 I = 2 r N E G  

D O  76 I=lrN 
ZETAPR(I)=Y(I)+ALAMPR*(ZETA(I)-Y(I)) 
Z E T A P = Z E T A P + Z E T A P R ( I )  
DLAM=O 
00 77 I = l  r N  
I F ( Z E T A P R ( I ) ) 7 7 r 7 7 r 7 6 5  
D L A M = D L A M + ~ Z E T A ~ I ~ - Y ~ I ~ ~ + ( A L O C ( P / C O N P R F ~ ~ A L O G ~ ~ ~ I ~ ~ + D ~ ~ O ~ I ~ / ~ T + A ~ O  

I G ( Z E T A P R ( 1   ) / Z E T A P ) )  
C O N T I N U E  
I F ( D L A M ) 8 1  r 8 1 t 8 0  
I F ( I I C - 3 ) 8 0 5 r 8 l r 8 1  
I I C = I   I C + l  
A L A M P R = A L A M P R + * 9  
GO T O  75 
A L A M P R =  1 
GO T O  745 

C O N V E R G E N C E   T E S T   F O R   Y ( I ) S  

I F ( A L A M P R - * 5 0 ) 8 3 r 8 1 5 r B 1 5  
DO 82 I = l . N  
I F t Z E T A P R (  1 )  )813r816*813 
R E L = Y  ( I 1 - Z E T A P R  (I ) 
IF(ABS(REL)-EPS1)818r818~83 
R E L = Z E T A P R ( I  ) / Y ( I  )-l* 
IF(ABS(REL)-EPS2)82r82r83 
I F ( Y ( I ) ) 8 1 7 r 8 2 t 8 1 7  
GO T O  83 
CONT I NUE 

Y ( I IS CONVERGE 

D O  800 I = l r N  
Y ( I ) = Z E T A P R ( I )  



GO T O  95 
C 
C NON-CONVERGENCE OF Y(I)S 
C 

83 NCOUNT=NCOUNT+l 
IF(NCOUNT-NIT)84r100rlOO 

84 CO 85 I=lrN 
85 Y(I)=ZETAPR(I) 

C 
C REPEAT  WITH  NEW Y ( I ) S  AND NO. OF ITERATIONS  LESS  THAN  NIT 
C 

GO T O  346 
95 DO 201 I = l  rN 

201  X(I)=Y(I)+CAPM(I) 
YBAR=OaO 
CAPM I = O  
DO 2026 I=lrN 
YBAR=YBAR+Y(I) 

2026 CAPMI=CAPMI+X(I  )/CAPM(I) 
CAPMIZI .O/CAPMI 
Z=AMC/CAPMI 
ESUM=O 

QSUM=O 
DQINT(I)=O 
LEND=L( I ) 
DO 2028 L l = l  *LEND 
SUM=O 

DO 2029 I=lrN 

DO 2027 IC=lrICI 
HOOTK=CONH*C*OMEG( IC IL l r l ) / fK  
IF(OMEG(ICrLlrI))200Or2O27~2OOO 

2000 SUM=SUM+HOOTK/(EXP(HOOTK)-l*) 
2027 CONTINUE 

D Q I N T ~ I ~ ~ D Q I N T ~ I ~ + Q I N T ~ L l r I ~ / T + ( 1 . + S U ~ ~ + S M A L E ~ L l r I ~ * C O N H ~ C  
l/(TK*T) 1 

2028 QSUM=QSLJM+QINT(LlrI) 

2029 ESUM=ESUM+X(I ) + € ( I )  
E(I)=l./CAPM(I)+(1.5*RT+RT*T/QSUM*DQINT(I)+DHFO(I)) 

HOZRT=CAPMI+ESUM/RT+l~O 
H=HOZRT+CONR+T+Z/AMC 
TK=T*CONK 
FSUM=O 
DO 2040 I=lrN 

2033 IF(Y(1))2034*2034r2035 
2034 CAPFI(I)=O 



GO TO 2040 
2035 C A P F I ~ I ~ ~ Y ~ I ~ + ~ A L O G ~ P / C O N P R F ~ + A L O G ~ Y ~ I ~ / Y B A R ~ - A L ~ ( ~ ~ I ~ ~ + D H F O ~ I )  

1 /RT ) 
2040 FSUM=FSUM+CAPFI ( I ) 

SOZR=HOZRT-CAPMI+FSUM 
SOR=SOZR*Z 
RHO=P+CAPMI/RT 
U = C A P X + a 4 3 4 2 9 + A L O G ( 2 7 3 m l 6 / ( Z * T ) )  
ooz= 1 o/z 
DO 300 I = l  r N  
Y S T O ( I ) = Y ( I )  

RETURN 
300 X ( I ) = X ( I ) + C A P M I / C A P M ( I )  

100 W R I T E ( b r 5 0 0 0 )  
500C F O R M A T ( l H O r 2 5 H  THIS  CASE  NON-CONVERGENT) 

C A L L   E X I T  
END 



BIBFTC FOFX DECK 
SUBROUTINE  FUNC(DUM*FOFX) 
CO"ON/BLOCK/HM*AM*M r P 3 ( 3 0 )  
DIMENSION H M ( 3 0 ) r A M ( 3 0 )  
CALL  FTLUP(DUM*AA*-2rM*HM*AM) 
F O F X = A A  
RETURN 
END 



SIBFTC SOLUT DECK 
SUBROUTINE S O L U T ( W 3 * P 3 r U 2 r P 2 r M r N r U R r P )  
DIMENSION U 3 ( 3 0 l r P 3 ( 3 O ) r U 2 ( 3 0 ) r P 2 ( 3 0 ) r U ( E )  
FUNCD(PP~UUIR)=PP-UU*R 
FUNAB(P*PPrUrUy)=(P-PP)/~U-UU) 

c 
C USE  END POINTS FOR FIRST  INTERSECTION 
C 

M R =  1 
NR=  1 
I F ( P 2 ( 1   ) o G T . P 2 ( 2 ) )  NR=”NR 
I F ( P 3 ( 1   ) o G T . P 3 ( 2 ) )  MR=-MR 
P 3 1 = P 3 ( 1 )  
P32=P3  ( M  ) 
P 2 1 = P 2 ( 1 )  
P 2 2 = P 2   ( N  1 
u 2 1 = u 2 ( 1 )  
U22=u2  (N 1 
U 3 1 = u 3 ( 1  1 
U32=U3 ( M  1 

5 AA=FUNAB(P22rP21tU22rU21) 
B B = F U N A B ( P 3 2 r P 3 1 * U 3 2 r U 3 1 )  
C C = F U N C D ( P 2 l r U 2 l r A A )  
D D = F U N C C ( P 3 l r U 3 l r B B )  
UR=(CC-OD)/(BB-AA) 
PR=CC+UR+AA 
C A L L  F T L U P ( P R * U ( l ) r N R * N r P 2 r U 2 )  
C A L L  F T L U P ( P R r U ( 2 )   r M R r M r P 3 r U 3 )  
I F ~ A B S ~ ~ U ~ l ~ - U ~ 2 ~ ~ / U ~ l ~ ~ - = O ~ O l ~ l ~ r l ~ ~ l O  

10 P31=P32 
P32=PR 
P 2  1  =P22 
P22=PR 
U3 1 =U32 
U32=U ( 2  1 
u 2  1 =u22 
u22=u( 1 1 
GO TO 5 

12 P=PR 
RETURN 
END 



APPENDM 

SENSE LIGHT 1 ON 
NS=O 
REAL=O 
I- - COMPUT=O I 
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APPENDIX 

P E R N S  

I 
P E R N S  

I /-"\ L--l" 

P 1 =PLAST ? 

compute  Return  to  
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(c) After  diaphragm  burst, t = ta. 

Figure 1.- Operating sequence of a  simple  shock  tube. 
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Figure 2.- Schematic  diagram of expansion  tube flow cycle. 
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Figure 3.- Velocity u3 as a function of pressure p3 for  real gas isentropic  expansion of helium  for pe/po = 315 and T4 = 15 000" K ;  
velocity u2 as a function of pressure p2 for  incident  normal  shock in alr. 
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Figure 4.- Incident  shock speed in a i r  as a func t i on  of pl/po for   in i t ia l   he l ium  dr iver   condi t ions of p 4 p 0  = 315 and T4 = 15 OOOo K. 
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Figure 5.- Shock speed as a function of initial air pressure for helium driver  conditions of p4/po = 300 and T4 = 2500° K. 



Figure 6.- Shock  speed as a function of pl/po for helium  driver conditions of p4/p0 = 300 and T4 = 25000 K. 
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Figure 7.- Expansion tube test gas speed as a function of pl/po for helium driver conditions of p4/p0 = 300 and  T4 = 25W0 K. 
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Figure 8.- Expansion  tube  test  gas  temperature as a funct ion of in i t ia l   a i r   p ressure   fo r   he l ium  d r iver   cond i t ions  of p4/p0 = 300 and T4 = 2500O K. 
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Figure 9.- Expansion  tube test gas pressure as a function of initial air pressure for helium driver conditions of  p4/po = 300 and T4 = 2500O K. 



10-1 Pressure, 10O 

Figure 10.- Test gas shock speed as  a func t i on  of buffer gas pressure  for  test gas of 90 percent N2 and 10 percent C o p  
and  hel ium  dr iver  condi t ions  of  p4/p0 = 100 and T4 = 30O0 K. 
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Figure 11.- Test gas shock speed as a func t i on  of buf fer  gas pressure for test gas of 90 percent N2 and 10 percent CO2 and 
hydrogen  driver  condit ions of p4/po = 100 and T4 = 30O0 K. 


